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1@1" m m m h ematical methods (the theory of differential equations, analyt-
ical methods, integral transforms and so on) are used in the theory of special
functions.

However, a really unified view on the theory of main classes of special
functions was
re

ostablished by using the theory of group representations. Rep-
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and octave ones) as well as their generalizations such as Stiefel manifolds, ho-
mogeneous cones, homogeneous complex regions, and so on. For these manifolds
there are transformation Lie groups G which act transitively upon them and for
any pair of points they allow a symmetry (permuting these points) with respect
to a G-invariant metric. The spaces characterized by these properties are called
symmetric. Riemannian symmetric spaces were mtroduced and studied by E.
Cartan.

The relationship between special functions and the geometry of homogeneous
spaces 18 based on the following facts. The special functions most often arise
when the equations of mathematical physics are solved by the method of separa-
tion of variables in a certain coordinate system. The most important equations
are invariant under some transformation groups (for example, the Laplace equa-
tion is invariant under the group of motions of Euclidean space R™. the wave
equation under the group of linear transtformations that preserve a quadratic

form z§ — x5 — ... — 22, the Maxwell equation under the Poincaré group, etc.).

But the Laplace operator coincides, up to a constant factor, with the operator
lim, _o[S(x,7, f)— f(x)]/r*, where S(z, 7, f) is the mean value of the function f
on the sphere with center r and radius r. It can be theretore defined in a natural
way on symmetric spaces, giving on them G-invariant differential operators. This
allows us to construct on such spaces the analogues of the classical differential
equations of mathematical physics. When the variables are separated the spaces
are fibered into coordinate surfaces which, in turn, are symmetric spaces. The
special functions arise when eigenfunctions of invariant differential operators (in
particular, of the Laplace operator and its generalizations) are sought, and it is
therefore clear that their properties should involve the invariance of the opera-
tors under transformations of the group G. Any eigenfunction of an invariant
operator transforms under the action of ¢ € G into an eigenfunction that corre-
sponds to the same eigenvalue. The linear transformation T'(g) is thus defined
in the space of such eigenfunctions, and here the equality T'(¢1)T (g2) = T(g192)
is valid. The correspondence g — T'(g) is a representation of the group G. So,
we throw a bridge between the differential operators invariant under the action
of some group (G and representations of this group, which is also connected with
special functions.

Hence, the group theoretical approach to special functions involves different
branches of mathematics: differential operators, differential equations, geome-
try, and so on. A recent development of the subject shows that quantum groups
(new mathematical objects which appeared in the theory of quantum inverse
scattering) are very useful for studying g-orthogonal polynomials and basic hy-
pergeometric functions.

In this paper we are concerned with some of the main directions of interre-
lations between group representations and special functions. These directions
are related to contribution of Tom Koornwinder to the subject. Because of lim-
ited size of this article, we do not consider many interesting group theoretical
methods in studying special functions. In particular, we are not dealing with
the role of representations of symmetric groups in the theory of polynomials of
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discrete variables |5, 6] and of representations of Chevalley groups in the theory
of g-orthogonal polynomials [38-40], we do not show applications of infinite pa-
rameter Lie groups in the theory of special functions [16, 41]. Let us note that
these and all other main directions of applications of group representations in
the theory of special functions are presented in the book [45].

2. MATRIX ELEMENTS OF GROUP REPRESENTATIONS AND SPECIAL FUNCTIONS
In fact, applications of group theoretical methods to special functions go back
to E. Cartan. He developed a general theory of zonal spherical functions on
compact symmetric spaces X = GG/ H, i.e. the functions that are constant under
the action of a stationary subgroup H of some point and such that their shifts
generate a subspace in which an irreducible representation of this group G is
realized. If G = SO(3), H = SO(2), then X is a sphere, and zonal spherical
functions coincide with the classical polynomials introduced by Legendre and
Laplace. A system of zonal spherical functions is orthogonal with respect to
an invariant measure on X. A similar theory is constructed on locally compact
symmetric Riemannian spaces, but then the set of zonal spherical functions
has the cardinality of the continuum and their orthogonality 1s interpreted in
the same sense as in the theory of Fourier integrals. For example, in the case
when X is a two-sheeted hyperboloid we obtain a set of Legendre functions.
The methods used by Cartan were based on the ideas employed by H. Weyl
and F. Peter to prove the general theorem that matrix elements of irreducible
unitary representations of a compact group GG form a complete orthogonal set
of functions on G. This theorem explains the orthogonality of many systems of
special functions.

The strong stimulus for stydying the relationship between special functions
and the theory of group representations was given by the development of physics.
To solve differential equations available in quantum mechanics 1t was necessary
to use the symmetry of the physical systems under study, i.e. transformation
eroups that leave invariant some important characteristics of these systems (for
example, potential in the Schrodinger equation). Since for some particular cases
(for example, for the harmonic oscillator) solutions of these equations could be
expressed in terms of the special functions, it was necessary to establish a rela-
tionship between the theory of these functions and the transformation group that
leaves invariant the physical systems studied. Here we must mention Wigner’s
contribution. In those years group theory was not known to physicists ot clas-
sical school (astronomer J. Jince even said that the physicists would never need
it), and this period in the development of theoretical physics was named “the
Gruppenpest”. Spectroscopy studies began to make increasingly wider use ot
such concepts as Clebsch-Gordan coefficients, Racah coefficients and more gen-

eral symbols related to a decomposition into irreducible representations ot the
tensor product of representations of groups. The requirements of relativistic

physics advanced the task of studying the representations of noncompact Lie
groups, in particular, of the Lorentz group SO,(3, 1) and of its three-dimensional
analogue SO,(2,1). These investigations resulted in the theory of infinite dime-
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sional representations of semisimple Lie groups (V. Bargmann, I. Gel’fand and
M. Naimark, Harish-Chandra) and then of nilpotent (A. Kirilov) and solvable
(Auslander) Lie groups.

While studying the matrix elements of irreducible unitary representations of
the group SO,(2,1), V. Bargmann found that they are expressed in terms of
hypergeometric functions. Moreover, the matrix elements of representations ot
the discrete series are expressed through a particular case of this function (Jacobi
polynomials). The same polynomials are used to express the matrix elements
of irreducible unitary representations of the group SO(3) which is a compact
real form of the group SO(3,C), a complexification of the group S50,(2,1).
“Straightening” the groups SO,(2,1) and SO(3), we obtain the group I50(2)
of motions of the Euclidean plane. The matrix elements of irreducible unitary
representations of this group are expressed in terms of the Bessel function.

So, the theory of the classes of special functions most important for applica-
tions - the hypergeometric function and the Bessel function - turned out to be
assoclated with the representations of the simplest noncompact Lie groups.

artan’s theory of zonal spherical functions constructed earlier was associated
with the matrix elements of representations of class 1, i.e. such that their space
has a single vector v( invariant under the operators T'(h), h € H. If we take vg
to be one of the basis vectors, the corresponding matrix element (7'(g)vg, Vo)
will be constant on two-sided coset spaces with respect to the subgroup H, and
so 1t gives a zonal spherical function on X = G/H. Similarly, matrix elements
such as (T'(g)ve,v) and (T(g)v,vp) are expressed through associated spherical
functions.

The fact, that matrix elements of group representations are expressed in terms
of special functions, allows us to study properties of these functions. For exam-
ple, representation of a matrix element in the form ¢,,,(g) = (T(g)v.n, Vs ) gives
itegral formulas for special functions if carrier spaces of representations are
spaces of functions. Moreover, equalities of the type T(g;)T(g2) T(g192),
where 1’ 1s a representation and g;, g2 € G, lead to addition theorems for special
functions. In a similar way we obtain recurrence relations, generating functions
for special functions, and so on.

Considering matrix elements of group representations we obtain special func-
tions with discrete values of parameters. In order to obtain the properties of
arbitrary special functions it is necessary to choose continual bases composed
of generalized functions of representation spaces (similar to the basis {€***} in
the space L“(R)), for example, the bases that diagonalize a noncompact one-
parameter subgroup. Operators of representations of the group SO,(2,1) in
these bases are given by integral operators whose kernels are expressed in terms
of the hypergeometric function or cylindrical Hankel functions. Applying for
these kernels the methods used for usual matrix elements we obtain relations for
these functions including “continual addition theorems” in which the integration
Is over the parameters of the functions, but not over arguments. Ordinary addi-
tion theorems are derived from them using residue theorems. It is of interest to
consider “mixed bases”, i.e. a decomposition of the result of action of represen-
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tation operators upon elements of one basis into elements of the other one. As a
result, in the case of the group SO,(2, 1) we get the Whittaker functions, the La-
guerre polynomials, the Pollaczek polynomials and different relations connecting
these functions with the hypergeometric function. We note that the Whittaker
functions and the Laguerre polynomials also appear when we study the matrix
elements of irreducible representations of the group S of triangular third-order
matrices which 1s an extension of the Heisenberg group, the simplest in the
class of nilpotent groups [44|. A series of new relations for special functions
arises when we realize the representations using boson creation and annihilation
operators.

3. KOORNWINDER’S ADDITION THEOREMS FOR JACOBI AND LAGUERRE POLY-
NOMIALS

Let g;—1(0) be the matrix of the group SO(n) describing rotations in the plane
(¢ — 1,72) by the angle 8. The relation

gnml (9)972»““2(?!)).971“1((!0) — QTLMQ(('}{)QH--I (7)9”“’"2(6) (]')

is fulfilled in the group SO(n), where the angles «, v, 3 are expressed in terms
of the angles 6,1, ©, in particular

COS ¥ = cos 0 cos p + sin @ sin ¢ cos 1.

Irreducible unitary representations of SO(n) which are of class 1 with respect
to the subgroup SO(n — 1) are given by a nonnegative integer m. We denote
these representations by 7,,. For the representation 7;, relation (1) can be
written as

Tm (gﬂ,.......l (9))Tm (gn-—-2 (77/)) )Tm (gn“ 1 ((10))

= T (gn—2())Trm(gn-1(7))Tm (gn—2(0)). (1)

We take the basis of the carrier space of the representation 7, which corresponds
to the successive restriction of 7}, onto the subgroups SO(n—1) D SO(n—-2) O
SO(n —3) D ... D S0(2). The basis elements are given by integers M
(m,m1,ma,...muy_o) such that m > m; > my > ...m,,_2 > 0. The matrix
element

t?}j’N (gn-—-l(e)) — <Tm (Qn-—-l (9))VN7 VM>

vanishes unless m; = n;, 7 = 2,3,...,n — 2. If these equalities hold, then the
matrix element does not depend on ms, my,..., m,—1. In particular, the zonal
spherical function t7}5(g,~1(6)) (where M = N = O = (0,...,0)) coincides with

]

m ml(n — 3)' n—2)/:
00(gn-1(0)) = “(";1“?_(‘”;1“”357 o 2)/%(cos B),

where C¢(x) is the Gegenbauer polynomial. The associated spherical function
I
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mlo(q"rwl( )) = csin™! gcrm+(n---2)/z(0089)j

TrL — 11

where ¢ is a constant [43].
We obtain from formula (1") the relation

T

}:t{ﬁ (9n-1(8))d5o(gn-2(¥))ti6(gn—1(9)) = too(gn-1(7)),

where d3,(gn—2(%)) is the zonal spherical function of the representation T} of
the subgroup SO(n — 1). Substituting here expressions for matrix elements we
directly obtain the well-known addition theorem for Gegenbauer polynomials
43].

If we use the class 1 irreducible representations of the group U(n) instead of
those for SO(n) and the relation

On—1 (gl)gn---Z( ) n(‘/f’)gnwl(g‘iZ) — kgv*zm—l(e)dn(wl)k:,a (2)

where d,, (1) is the diagonal matrix diag (1,...1,e*¥) and k, k' are elements of

the subgroup U(n — 1), then in the same way we obtain the addition theorem
tor Jacobi polynomials:

=
~

k
PP (cos 26) = z Akl (Sin 0) sin 62)* 1 (cos B, cos 62)*
k=0 [=0

x PPEEFLE=D (00520, ) PPTETHETD (065 26,)

m—Kk

xPl(pml"k“z)(cos 2¢) cos® " pcos(k — 1), (3)

where
cos 20 = 2| cos #, cos B + sin B sin O, cos ¢ eV |2 —1 (3)

and a,,r; are constants. Differentiating both sides with respect to cosv and
taking into account the formula

d 1

D@ = glat B 4n+ DRI (@)

we derive the addition theorem

k:

"
PJ}S}ZLQ) (C‘:()S 26’) — Z Z Coy ke (Sin 91 sin 92)k+l (COS 91 COS gz)kml

k=0 [=0

— k1 q+k—1 ~
X COS" @P(’H_ Thath = (05 26 )P(p+k+l 9TE=D (cos 20,)

n — Kk n-—Kk

x PPTI7LATE= (g 20)CY _,(cos ), (4)
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where cos 26 1s given by formula (3’) and ¢,,; are constants. This proof of
formula (4) is due to KOORNWINDER [18]. Koornwinder gave also analytical
proofs of this result [22, 24]. In [19] another group theoretical proof of formula
(4) is given which uses spherical harmonics of the group SO(n) with respect to
the subgroup SO(m) x SO(n — m). '

Both sides of formula (4) are rational functions of p and ¢. Therefore. this
formula is correct for p € C and q € C. Using integrations the product formula

20 (p + 1) P" (1)

PP:9) (06520, ) PP:9) 20-) — n__\
n (CO% 1) n (COS 2) \/’;T—P(p — Q)F(q n }2 )

+1 T
X / / P{»9) (2] cos 6, cos By + re'¥ sin 6, sin 6|2 — 1)
0 Jo '

Ny ) “ .
x (1 — r2)P~97 102941 3129 oy dapdr
is obtained [17]. By the substitution
e’ cos @ = cos @y cos By + re'¥ sin 6y sin b,

this product formula is transformed into another product formula which was
obtained in a different way by GASPER [9].

Using the class 1 irreducible unitary representations of the noncompact Lie
group U(n — 1,1) instead of representations of the group U(n) the addition
theorem for Jacobi functions

_ 1
Rff’m(x) = I (—pu,p+a+0+1;a + 1; -~2-~(1 —))

1S obtained which 1s of the form

> @ TrL
RL‘I”B) (cosh 2t) = E E cwnl?""’”’”l(sinh t; sinh tg)?'"""'l
m=0 [=(

X (cosh t; cosh tg)m"lR(a+m+l’B+mml) (cosh 2t, )Rfff__—';;n'l'l’ﬁ_l”m"” (cosh 2t5)

)

><1——3’1(("]'5'_’6“1"/j mml)(27"2 - 1)0‘8 , (cos ),

e —
where
cosh 2t = 2| cosh t; cosh ty + rsinht; sinhty €¥|* — 1.

An analytical proof of this formula is given in [7]. The product formula and
other interesting properties for Jacobi functions are derived in [§].

By using more general relations in the group U(n) than formula (2), the
addition theorem for the disc polynomials

e, 77— T — r, — :
RC 7§, )(sz — 1)z f m = n,

<) — - '
'mn( ) T(?ix,nm'rn)(zzg o l)é—nmv“rz Zf m < n
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is proved [22] with the help of the same matrix elements of the class 1 irreducible
representations of U(n). Making some manipulations and substitutions and
using the limit formula

L (x)/L%(0) = };in}){P},gW) (1-28""1z)/PP (1)},

where L%(z) is the Laguerre polynomial, KOORNWINDER [25]| derived the new
addition formula for Laguerre polynomials

OO Tl
L¥(x* + y* — 2xyrcosy) exp(izyrsiny) = Z Z Dokl

k=0 [=0
Nk pakkl 2y potktl, 2y pa—1( iy
< (xy) LT @) LT (WP Ry (re'), (5)

wherea >0, n=0,1,2,....2>0,y>20,0<r<1,0< 9y <2m, and
£o(x) = e~ /2 LY (2)/LE(0).

By integrating this addition formula we obtain the product formula [25]

. . 2 [t [T ;
LaeLiw?) == [ [ L+ o+ 2wyrcos )
/() 0

x cos(zyrsin)r(1 — r?)*~ 1dydr,

where x > 0,y > 0, a > 0.
Unfortunately, formula (5) was not directly derived by group theoretical meth-
ods. Probably, it can be obtained by an extension of results of the paper [44].

4. REPRESENTATIONS OF LIE GROUPS AND POLYNOMIALS OF DISCRETE VARI-
ABLE

For a long time polynomials on discrete sets of points were beyond intensive
investigation. These polynomials are called polynomaials of a discrete variable.
Most important ones are Krawtchouk, Meixner, Hahn, and Wilson polynomials
(g-orthogonal polynomials are considered below). Attention to these polynomi-
als was Initiated by development of discrete mathematics, which, in turn, was
stimulated by coding theory, computer science, associative schemes, design the-
ory, and so on. The rise of interest in polynomials of a discrete variable led
to application of group theoretical methods in the theory of such polynomials.
Representations of Lie groups as well as those of discrete groups can be applied
for studying polynomials of a discrete variable. However, the idea of applications
of representations of topological groups is somewhat different.

Let 1" be a unitary irreducible representation of a group G in a Hilbert (finite
or infinite dimensional) space L, and let {e;|j € I} be an orthonormal basis of
L. The matrix elements ¢,,,(g) = (T'(g)en,e,,) of a representation 7" have the
property
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Z tin (Q)tkzn (g) = Omk-

nel

Let us denote n by = and introduce the notation F'(x;m, g) = t,,.(g). Then for
every g € G we have

ey L A PRk b —
i el !

Z F(z;m,g)F(z;k,g) = bmk- (6)
xel

Thus, at fixed g € G the set of functions {F(xz;m,g)|lm € I} constitutes an
orthonormal system on I.
If I is the Hilbert space of functions f(z) on I with the scalar product

(f1, f2) = Z:I:EI fi(x) fa(x), then any function f & [“ can be decomposed 1nto
the series

f(z) = Z amF(x;m,g), (7)

mel

where

im =3 f(@)F@m9). @

el

The corresponding Plancherel formula is valid.

Sometimes, the functions F'(x;m,g) are connected with known orthogonal
polynomials or special functions. The formulas (7) and (8) give expansion in
these polynomials or functions and formula (6) leads to an orthogonality relation
for them.

This idea was firstly realized by KOORNWINDER [27| who connected matrix el-
ements of finite dimensional irreducible representations of the group SO(3) with
Krawtchouk polynomials. In the same paper he also mentioned that Meixner
polynomials are connected with matrix elements of discrete series representations
of the group SL(2,R) and Charlier polynomials with irreducible representations
of the Heisenberg group.

Special functions of a discrete variable appear also under investigation of ten-
sor products of irreducible representations of groups. If 77 and 715 are two
irreducible representations of a group G, then in the space L ® Lo of the rep-
resentation 77 ® 75 orthogonal normalized bases can be taken in two different
ways. The first basis consists of tensor products of elements of bases of the
spaces L, and L9 and the second one is obtained if we decompose L @ Lo into
irreducible subspaces and take bases in these subspaces. These two bases of
L; ® Lo are connected by a unitary matrix. Elements of this matrix are called
Clebsch-Gordan coefficients of a group G. For the group SU(2) these coefhi-
cients are expressed in terms of the function 3F5(a,b,c;d,e;1). KOORNWINDER
26| showed that they can also be expressed in terms of Hahn polynomials. Uni-
tarity of the matrix, consisting of Clebsch-Gordan coefficients of SU(2), easily
leads to the orthogonality relation for Hahn polynomials.
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This idea can be applied to representations of the group SU(1,1). In par-
ticular, simple expressions for Clebsch-Gordan coefficients for tensor products
of the discrete series representations of SU(1,1) are obtained for different bases
(elliptic, hyperbolic and parabolic ones). There are relations involving Clebsch-
Gordan coefficients and matrix elements of representations. In the case of the
group SU(1,1) these relations lead to group theoretical interpretation of many
formulas connecting different special functions and orthogonal polynomials (see
Chapter 8 in [45]).

ROOT SYSTEMS AND GENERALIZATIONS OF HYPERGEOMETRIC FUNCTIONS
Let G be a connected real noncompact semisimple Lie group and let g be 1its
Lie algebra. We fix a Cartan decomposition G = KAK of &G where K 1s a
maximal compact subgroup of G and A is a commutative subgroup. There is
the commutative Lie subalgebra a in g such that A = expa. The dimension of A
(and of a) is called the real rank of G. Let ¥ be the root system of the pair (g, a)
and let W be its Weyl group. The root system consists of orbits of the Weyl
eroup W. There exist three possibilities: the root system X consists of one, two
or three W-orbits. It is well known that multiplicities of roots in a fixed orbit
are fixed. We denote multiplicities by m,, mg, m., where «, 3,y are roots from
different orbits. If there are only two (one) orbits, then m., = 0 (mg = m, = 0).

Zonal spherical functions ¢ of irreducible representations of the group G are, in
fact, functions on A, that is p(kyaks) = w(a), k1,ke € K,a € A. Let Aq,..., A,
be independent Casimir differential operators on G and let AY, ..., AY be their
radial parts. The number n coincides with the rank of G. The operators A?,
= 1,2,...,n, are invariant with respect to the Weyl group W. A zonal spherical
function y is solution of the system of differential equations

Aﬂap 1L, 1 =1,2,...,n,

under appropriate numbers p;. Moreover, these systems uniquely determine
zonal spherical functions if we démand that

(a) @ is symmetric with respect to W,

(b) ¢ is a regular function in the unit e of G,

(¢) p(e) = 1.

For example, if the real rank of G is equal to 1, then there exists only one
operator AY (it coincides with the radial part of the Laplace-Beltrami operator).
In this case m, = 0 and 3 = 2a. Thus, we have only the multiplicities m, and
moq. The operator AV difines the differential equation

T d
{d 5 + (mq cotht 4+ 2my, coth 2t)~a—z}ap = —[\(H)? + p(H)?¢, (9)

where a; = exptH € A, o(H) = 1, A is a linear form on a, and p is the half-sum
of positive roots: 2p = (my + 2myy)a. The solution of equation (9), which
satisfies all necessary conditions, is
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[ 4+ moy —1 1, Noa + 1 r
pa(t) = ccosh’ t o Fy (““Q'"a = ““*; — — i 7;2 S tanh?t),  (10)
where [ = (1A — p)(H) and c is a constant. If Re(i\, ) > 0, then

e("i)‘""p)(tH)cp)\(t) — ¢(A) as t — +oo

where c(A) is the Harish-Chandra c-function.
There are only four types of groups G with real rank 1:

for the first type Mo € 2y, Moy = 0,
for the second type my € Z_, mo, = 1,
for the third type Mo € Ly, Moy = 3,

for the fourth type m, =8, mo, = 7.

Since my € Z4 and me, takes one of the values 0.1,3.7. then zonal spherical
functions (10) can not give a general hypergeometric function o F). A similar
situation takes place in the general case since we have certain restrictions for
values of the multiplicities m,, mg, m,.

Let us note that if one of the numbers [/2, ({ +my, —1)/2 in (10) is a positive
integer, then this hypergeometric series is terminating and @) is expressed in
terms of the Jacobi polynomial. This statement is valid for rank n > 1. Namely,
if parameters determining zonal spherical functions ¢ satisfy some integrality
conditions, then ¢ can be expressed as a polynomial of n variables (generalized
Jacobi polynomials).

In order to obtain in (10) a general hypergeometric function o F} and a gen-
eral Jacobi polynomial, one allows for m, and ms, to take any complex values
(except for some singular points). In this way we turn to special functions con-
nected with root systems. Namely, in the case of the root system corresponding
to real rank 1 we consider W-invariant differential equation (9), where m, and
Mo, are fixed complex numbers (except for the singular points). A solution of
this equation, regular at the point ¢ = 0, gives a general hypergeometric function
o F1 (a general Jacobi polynomial if the integrality conditions are fulfilled).

These considerations were given for real rank 2 by KOORNWINDER (20, 23|. He
obtained Jacobi polynomials of two variables corresponding to the root systems
As and BC5y. A further generalization was given by Vratare [46]. He defined

. . : a,b,c . ,r
the generalized Jacobi polynomials pgn, ()(:z:), where a, b, c are determined by
Ma, Mg, M~y and = = (T1,...,Zy), M = (M1,...,My), m; € Zy. Generalized

hypergeometric functions related to root systems with complex multiplicities
were given by HECKMAN and OpbpAM [13|. The case of root system BC), is
considered by DEBIARD [4].

Of course, it is necessary to study Heckman-Opdam hypergeometric functions
and to establish which properties of zonal spherical functions remain valid for
them. Let us make the following remark related to this problem. We know that
the spherical transtorm

FO) = [ f(@)eo-pla)dg "
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is defined with the help of zonal spherical functions ;)—, corresponding to
unitary irreducible representations of G. The inverse transform is of the torm

fg) = W] [ PO (9)le(N)] 2, (12)

where c()\) is the Harish-Chandra c-function and € is the set of values taken
by parameters, giving non-equivalent irreducible representations of the spherical
principal unitary series. The corresponding Plancherel formula is valid. It was
shown by Flensted-Jensen and Koornwinder (see, for example, [21]) that in the
case of the root system of real rank 1 formulas (11) and (12) remain valid if we
replace multiplicities m, and ms, by complex multiplicities. Here we obtain
the Harish-Chandra c-function ¢(A) and the corresponding Plancherel measure
related to the root system with complex m, and ms,. A similar analytical
continuation of spherical transforms (11) and (12) for real rank n > 1 was not
obtained. In the real rank 1 case this analytical continuation, in fact, coincides
with a well-known Jacobi transform.

6. SPECIAL FUNCTIONS OF A MATRIX ARGUMENT
In 1955 HERZ [14] introduced the hypergeometric function ,F, of a matrix ar-
cument using Laplace and inverse Laplace transforms of functions of a matrix
argument. This idea was originated by Bochner who considered Bessel functions
of a matrix argument. CONSTANTINE [3] found a series expansion for Herz’s , F,
in terms of zonal polynomials. These zonal polynomials are the spherical func-
tions of certain irreducible polynomial representations of the group GL(n,R).
Recently GROSS and RICHARDS [10] treated hypergeometric functions , £, with
zonal polynomials for the groups GL(n,F), F = R, C, H. There are further
generalizations of these hypergeometric functions (for example, ones obtained
by replacement of zonal polynomials by Jack polynomials).

Let IF be one of the fields R, C or H, and let h(n, F) be the space of all Hermitian
n xn matrices A over F. The formula A — ¢g*Ag, g € GL(n,F), defines an action
of GL(n,F) in h(n,F). Let P(h) be the algebra of all polynomial functions on
h(n,F). Then the action of GL(n,[F) in P(h) is defined which gives reducible
representation 7' of this group. This representation in P(h) is multiplicity free.
We have the decomposition

P(h) = >  &Pm(b)

of P(bh) into irreducible subspaces, where m = (my,...,my), mi1 > mo > ... >
mn, = 0, m; € Z, determine highest weights of the corresponding irreducible
representations. Polynomials of Pm () are homogeneous of degree m = \m| =
mi + ...+ m,. In every subspace Pm(h) there is a unique (up to a constant)
K -invariant polynomial Zm(A), where K is the maximal compact subgroup in
GL(n,F). We refer to Zm as the zonal polynomial on h(n,F) of weight m. It

1s clear that these polynomials are related to zonal spherical functions of the
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corresponding representations of GL(n,F) with respect to the subgroup K. We
normalize the polynomials Zm (A) such that

(TrA)" = > Zm(A).

m|=r

Then the hypergeometric function pF, of a matrix argument is defined to be the
real-analytical function on f(n,F) given by the series

qu(al,. : .,&p;bl,. . .,bq;A)

- = [aljm I Tap]m Zm(A) N
=) ¥ pmeemimis) (13)

r=( |m|mfr

where [a|m is the generalization of the classical Pochhammer symbol:

Here v denotes the real dimension of F and (a); = a(a+1)...(a+j—1). It
p < g then the series (13) converges absolutely for all A € h(n,F). If p=gqg + 1
then it converges absolutely for || A ||< 1, where || A ||= max{\;|7 = 1,2,...,n}
and \1,..., )\, are eigenvalues of A. If p > ¢ then the series (13) diverges unless
1t terminates. We have

OFO(A) mexp(TrA), 1F0(CL; A) e A(I — A)--a’

where I is the unit n x n matrix and A(A) denotes determinant of a matrix A.
For the hypergeometric function o F} of a matrix argument the formula

QFl(CL,b; C, A)
'y (c) /I b g bt o
N A(M Al — M)© A — MAN)"dM
) [, AGDTOA = M)A )

is valid, where § = £(n —1)r+1 and the generalized I'-function I, (a) is defined
as

Fn(a) = /0 exp(—-—*’I‘rA)A(A)‘l"gdA

(the integration is over all positive definite matrices from h(n,F)).

KORANYI [34] and MACDONALD [35] generalized hypergeometric functions
(13) by replacement of Z,,(A) by the appropriately normalized Jack polynomials.
Let us note that zonal polynomials are obtained from Jack polynomials by hixing
appropriately one of its parameters. BEERENDS and OPDAM |2] showed that Jack
polynomials are related to generalized Jacobi polynomials associated with the
root system A,,.
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KOORNWINDER [23] studied connections of his generalized two-variables Ja-
cobi polynomials with the hypergeometric function o F; of a matrix argument.
BEERENDS and OPDAM [2] generalized these studies. They showed that the gen-
eralized hypergeometric function o F; of a matrix argument can be obtained as a
special case of the hypergeometric function associated with the root system BC',.
Extensive study of the BC'; Jacobi polynomials is given by KOORNWINDER and
SPRINKHUIZEN-KUYPER [32]. They derived relations of these polynomials with
zonal polynomials, Appell’s Fy hypergeometric function, and a particular func-
tion of order 3. In [33] the same authors show that the hypergeometric function
of 2 x 2-matrix argument is expressible as a solution of the partial differential
equation for Appell’s Fy function. As a result, the first function can be written
as a sum of two Fj; functions.

7. THE QUANTUM GROUP SU,(2) AND ¢-ORTHOGONAL POLYNOMIALS

Basic hypergeometric functions and their partial and limiting cases constitute
large class of special functions depending on the additional parameter g. The
corresponding orthogonal polynomials are called g-orthogonal polynomials. g-
Krawtchouk, g-Hahn, dual ¢-Hahn, ¢-Askey-Wilson, little ¢g-Jacobi, continuous
g-Jacobl, big g-Jacobi, g-ultraspherical, g-Laguerre, ¢g-Hermite polynomials be-
long to widespread g-orthogonal polynomials. These polynomials can also be in-
vestigated by group theoretical methods. It was shown [38-40] that g-orthogonal
polynomials with ¢ = p®, where p is a primitive number and s is a positive inte-
ger, are connected with irreducible representations of Chevalley groups. Namely,
zonal spherical functions and intertwining functions of these representations are
expressed In terms of these polynomials. Using these groups, addition and prod-
uct formulas, orthogonality relations and other properties of these g-orthogonal
polynomials can be derived.

It was shown recently that g-orthogonal polynomials are related to repre-
sentations of quantum groups. Representations of quantum groups describe
g-orthogonal polynomials for any. complex ¢g. Quantum groups appeared in the
quantum method of the inverse scattering problem. They are more complicated
mathematical objects than discrete or topological groups. Quantum groups are
not manifolds. A quantum group is defined with the help of algebra of functions
on it which is a Hopf algebra [12, 29].

Basic hypergeometric functions are defined in terms of the expression

7, — 1
(a;q)n = [[(1—a¢’), a€C, nez,.
1=0 :

For n = 0 we set (a;q)g = 1. We have

llIIl ((]’; q)‘n — (Cl)n
q—1 ((1')3 Q)n (b)’n

Basic hypergeometric functions (or g-hypergeometric series) are given by the
formula '

where (a), = I'(a + n)/I'(a).
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n+1(,0n((l1, IR an-—}-l; bla ety bn; Qa 'Z)

=5 (a15Q)r - - (@ng15q)r 27 »
r={) (bl; q)?" . .. (bn; Q)r' (q, Q)‘T . I

The radius of convergence for generic values of the parameters is equal to 1. If
P .......n ) "'""'" w : : y g : : ' | M. , ; Y e
ap =q ", n&€Zy,and by,...,b, #1,q7 ", ..., ¢ ", then series (14) is terminat-

ing and well defined. In these cases we obtain polynomials. The polynomials

pn(z;0,b0lq) =2¢1(¢7", abg""; ag; ¢, gx)
are called the little g-Jacobi polynomials. The formula
Qn(z;a,b, N|g)
=3¢2(¢"",abg" ", ;09,47 ", q),

where N € Z, and n € {0,1,..., N}, defines the g-Hahn polynomials. The dual
g-Hahn polynomials also can be defined. The polynomaials

Kn(ﬂf, bv NIQ) —2 (/91((]”“3 £z qu'} q, bqn-{-l)'ﬂ

where N € Z, and n € {0,1,..., N}, are called the ¢-Krawtchouk polynomials.
There exist three other types of g-Krawtchouk polynomials [40]. The formula

pn(cos 0;a,b,c, d'Q) — a"”(ab; Q)n(ac; Q)n(ad; Q)n

X 43 (qmna adeQnM1a aelﬁ)’ ae-——z@; aba ac, (ld, q, Q)

gives the g-Askey-Wilson polynomials. They are symmetric in the parameters
a,b,c,d [1].
Let us define the algebra of functions A(SU,(2)) on the quantum group

SU,(2). We consider the associative algebra A’ generated by the elements
x,u, v,y which obey the relations

ux = \/qru, vr = ./qxU, Yyu = \/quUy, Yyv = \/q vy,
VU = U, asqu”l/qumy:r-——-\/@uvml,

where ¢ is a fixed complex number which is not a root of unity. The structure ot
a Hopf algebra is introduced into A’, that is, the operation of comultiplication
A:A — A" @ A’ the counit € : A’ — C, and the antipode S : A" — A" are
defined. The comultiplication A and the counit £ are algebra homomorphisms
and are uniquely determined by the relations

Al 2 ¥\ rR®r+u@®Y rRQUFTURY
v oy )] \ v Qzrx+y®@uv vQut+y®y )’

r v\ (1 0
“\w »v /) Lo 1)
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where elementwise equalities are understood. The antipode S 1s an algebra
antl-homomorphism and is determined by the equalities

Mo ou J —\/qu
Sty .. = ~1/2,, *
vy —q X

The associative algebra A’ with the structure of a Hopf algebra introduced is
called the algebra of functions on the quantum group SL,(2,C). It is denoted
by A= A(SL,(2,0C)).

If the parameter g is real, then we can introduce x-operation into A(SL,(2, C)).
This operation is a conjugate linear ring antihomomorphism a — a*, a € A, and,
therefore, is uniquely determined by the formula

r u *:: r*oovt o\ Yy —\/q U
vy = e Ta — __q—-l/QfU T ‘

called the alge}bm of funcztlcm.._s on the quantum group SU,(2) and is denoted by
A(SU,(2)). The quantum group SU,(2) is said to be a compact real form of the
quantum group SL,(2,C).

Let V be a linear space. A linear mapping T : V — V @ A is called a right
corepresentation of the Hopf algebra A = A(SL,(2,C)) in V if

(d®e)oT =id, ((d®A)oT =(T®id)oT.

The space V' is said to be a right A-comodule. A linear mapping 7 : V — AQV
18 called a left corepresentation of A in V if

(e®id)oT =1id, (A®id)o T =

The space V in this case is a left A-comodule.

Let T:V — V ® A be aright corepresentation of A. If W is a subspace of V
such that T(W) C W ® A, then W is said to be a right A-subcomodule and the
mapping I : W — W @ A is a right subcorepresentation of the corepresentation
I':V — V®A. One can easily formulate definitions of a direct (orthogonal) sum
of right (left) corepresentations, of irreducibility and of complete irreducibility
of corepresentations.

Let 7:V - V®Aand Q: W — W ® A be right corepresentations of

A = A(SLy(2,C)). If there exists a linear invertible mapping F : V — W such
that

(QoFlv=(F®id)oT)v forallv eV,

then 7" and @ are equivalent. In the same way the notion of equlvalence of letft
corepresentations is given.

Let e;,...,e, be a basis in a right A-comodule V', where a corepresentation
1" 1s realized. Then

Te, = E c; O tj;, where t;; € A.
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The elements t;; of the algebra A(SL,(2,C)) are called matrix elements of the
corepresentation 7'. It 1s easy to prove that

In the same way matrix elements of a left corepresentation are defined.
Let | be a positive integer or half-integer. We construct the linear spaces V-
and V, spanned by the elements

20 VY
ei:_l—l—i q r v, v =—l,—l+1,...,1, (15)
and by the elements
fi; = | & q ruw, r=-—l,—-l+1,...,1, (16)
respectively, where ::1 = (q; Onl(¢; @) m(q;Q)n-m])~*. It is proved [36] that

q
A:VESVE®A A:VES A VE

This means that the comultiplication A determines a left corepresentation of A
in V;* and a right corepresentation of A in V;*. They are denoted by T/ and T}

respectively. Elements (15) form a basis in V,* and elements (16) form a basis
in V,;**. We have

{
Aeiw Ztéj(geja Afz
j=—1

]
]
S
9
S

[t is proved [36] that tf;j = dﬁ-j for all {,7,7. The matrix elements are expressed

in terms of the basic hypergeometric function s¢; which 1s a little g-Jacobi
polynomial |28, 36, 42]. We have

ti; = ai,— ;¢ TV e T I g (G g T T ) i+ <0, 2
te; = a—; ;g T 2T 00 T (G T g T g) i+ <0, 5 >,
t; =a—i;q9 VU 2p (G g ) Ty T i+ 20, 5 2 0,
ti; = ai,—;q" 0D 2P (¢ ¢, ¢ vy T i+ 20,0 2
where ( = —¢~1/?24v and
o [ le:; ]1/2 [ ij; ]1/2
q q
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Using these expressions for t ;» KOORNWINDER |31] proved the addition for-
mula for little ¢g-Legendre polynomials p;(¢*;1,1|q). Let us note that we do-
not have one-parameter subgroups in quantum groups as in the case of classical
groups. Therefore, to derive addition theorems we can not use relations between
products of one-parameter subgroups (such relations are used to prove addition
theorems for classical orthogonal polynomials and special functions). To derive
the addition theorem for little g-Legendre polynomials, Koornwinder used rep-
resentations of the Hopf algebra A(SU,(2)). A representation of a Hopt algebra
B 1s a representation of an associative algebra B.

In paper [28] Koornwinder expressed the matrix elements ¢ ; In terms of the
g-Krawtchouk polynomials K, (x;b, N|g). Unitarity of the corepresentations 7;
of the Hopf algebra A(SU,(2)) means that

!

Z (t 'fln}.: ) 't f"z m 5;“0 m { )

rn=—|
where I is the unit of A(SU,(2)). This formula easily leads to the orthogonality
relation for g-Krawtchouk polynomials. The orthogonality relation for g-Jacobi
polynomials follows from the orthogonality relations for the matrix elements ¢!
(see, for example, [36]).

Elements t}, and t' , are zonal and associated spherical functions of the quan-
tum group SU,(2) with respect to the quantum subgroup H, which is the quan-
tum analogue of the one-parameter diagonal subgroup H of the Lie group SU(2).
Other one-parameter subgroups of SU(2) are conjugate to the subgroup H. For
this reason other subgroups do not give new results for orthogonal polynomaials.
This i1s not the case for the quantum group SU,(2). For example, the quan-
tum group SU,(2) does not have a quantum analogue of the subgroup SO(2) of
the group SU(2). In order to consider g-analogues of spherical functions of the
group SU(2) with respect to subgroups different from H, KOORNWINDER [30]
developed an infinitesimal approach to spherical functions of the quantum group
SU4(2). Namely, for SU,(2) he gave the notion of spherical elements by consid-
ering left and right invariance in the infinitesimal sense with respect to twisted
primitive elements of the quantized universal enveloping algebra U, (sl (2)). The
resulting spherical elements (which belong to the Hopf algebra A(SU,(2)) and
correspond to the irreducible corepresentations 7;) turn out to be expressible as
a two-parameter tamily of ¢g-Askey-Wilson polynomials. By using this approach
KOORNWINDER [30] also obtains dual ¢g-Krawtchouk polynomials. A further de-
velopment of this approach is given by H.T. Koelink and by M. Noumi and K.
Mimachi. They obtained more general results for g-Askey-Wilson polynomials
(including the addition formulas).

Clebsch-Gordan coefficients of tensor products T, ® T}, of matrix corepresen-
tations T; = (t!,,,) of the Hopf algebra A(SL,(2,C)) are defined in the same way
as in the case of the Lie group SU(2). They are entries of the numerical matrix
which transtorms the tensor product basis into the basis cosisting of bases of
irreducible subcomodules. KOELINK and KOORNWINDER [15] connected these
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Clebsch-Gordan coefhicients with ¢g-Hahn polynomials @, («r; a, b, N|g) and with
dual ¢g-Hahn polynomials. The orthogonality relations for Clebsch-Gordan coef-
ficients lead to the orthogonality relations for these polynomials. For generating
functions and some other properties of Clebsch-Gordan coeflicients of SU, (2) we
refer also to [11]. '

8. OTHER QUANTUM GROUPS AND ¢-SPECIAL FUNCTIONS

g-Orthogonal polynomials can be studied by means of other quantum groups.
Noumi, YAMADA, and MIMACHI [37] proved the g-analogue of the Peter-Weyl

theorem for matrix elements of irreducible representations of the quantum group
U,(n) and derived expressions for zonal spherical functions on the quantum space
Uq(n)/Uq(n o 1) _

Spherical functions on the quantum spheres S”j (c,d)and S q‘ (c,d) (which are 1m-
polynomials and g-Hahn polynomaials. M. Noumi and K. Mimachi connected the
quantum sphere S j (1, 1) with continuous g-ultraspherical polynomials C'3 (&3 q).

The quantum group of plane motions is used to investigate g-Bessel functions.
Representations of the noncompact quantum group SU,(1,1) lead to the basic
hypergeometric function 2¢;. In particular, representations of the discrete series
give little g-Jacobi polynomials and g-Meixner polynomaials.
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